Вернуться к содержанию учебника
Используя график, найдите множество значений функции:
а) \(y = 3x^{2} - 0{,}5x + \dfrac{1}{16}\);
б) \(y = 2x^{2} + 1{,}2x + 2\);
в) \(y = -\dfrac12 x^{2} + 4x - 5{,}5\);
г) \(y = -3x^{2} - 2x - 4\dfrac{2}{3}\).
Вспомните:
а) \(y = 3x^{2} - 0{,}5x + \dfrac{1}{16}\) - парабола, ветви которой направлены вверх, так как \(a = 3 > 0\), и наименьшее значение функции в ее вершине.
\(a=3\), \(b=-0,5\), \(c=\dfrac{1}{16}\).
\(x_0 = -\frac{b}{2a} = -\frac{-0,5}{2\cdot3}=\frac{0,5}{6} =\)
\(=\frac{5}{60} = \frac{1}{12}\).
\(y_0 = 3\cdot \left(\frac{1}{12}\right)^{2} - 0{,}5\cdot\left(\frac{1}{12}\right) + \dfrac{1}{16}=\)
\(= ^{\color{blue}{1}} \cancel3\cdot\frac{1}{\cancel{144}_{{\color{blue}{48}}}}-\frac{1}{24} + \frac{1}{16} =\)
\(=\frac{1}{48} - \frac{1}{24} ^{\color{red}{\backslash2}} + \frac{1}{16} ^{\color{red}{\backslash3}} =\)
\(=\frac{1}{48} - \frac{2}{48} + \frac{3}{48} =\frac{2}{48} = \frac{1}{24}\).
\(\left(\frac{1}{24}; \frac{1}{24}\right)\) - вершина параболы.
\(E(y) = \left[\frac{1}{24}; +\infty \right)\).
Ответ: \(E(y) = \left[\frac{1}{24}; +\infty \right)\).
б) \(y = 2x^{2} + 1{,}2x + 2 \) - парабола, ветви которой направлены вверх, так как \(a = 2 > 0\), и наименьшее значение функции в ее вершине.
\(a=2\), \(b=1,2\), \(c=2\).
\(x_0 = -\frac{b}{2a} = -\frac{1,2}{2\cdot2}=\)
\(=-\frac{1,2}{4} = -0,3\)
\(y_0 = 2\cdot(-0,3)^{2} + 1{,}2\cdot(-0,3) + 2= \)
\( = 2\cdot0,09 - 0,36 + 2 = \)
\(= 0,18 - 0,36 + 2 =\)
\(=-0,18 + 2 = 1,82.\)
\((-0,3; 1,82)\) - вершина параболы.
\(E(y) = [1,82; +\infty )\).
Ответ: \(E(y) = [1,82; +\infty )\).
в) \(y = -\dfrac12 x^{2} + 4x - 5{,}5\) - парабола, ветви которой направлены вниз, так как \(a = -\dfrac12 < 0\), и наибольшее значение функции в ее вершине.
\(y= -0,5x^{2} + 4x - 5,5\)
\(a=-0,5\), \(b=4\), \(c=-5,5\).
\(x_0 = -\frac{b}{2a} = -\frac{4}{2\cdot(-0,5)}=\)
\(=-\frac{4}{-1} = 4.\)
\(y= -0,5\cdot 4^{2} + 4\cdot 4 - 5,5=\)
\(=-0,5\cdot16 + 16 -5,5 =\)
\(=-8+16-5,5 =2,5.\)
\((4; 2,5)\) - вершина параболы.
\(E(y) = (-\infty; 2,5]\).
Ответ: \(E(y) = (-\infty; 2,5]\).
г) \(y = -3x^{2} - 2x - 4\dfrac{2}{3}\) - парабола, ветви которой направлены вниз, так как \(a = -3 < 0\), и наибольшее значение функции в ее вершине.
\(a=-3\), \(b=-2\), \(c=-4\dfrac{2}{3}\).
\(x_0 = -\frac{b}{2a} = -\frac{-2}{2\cdot(-3)}=\)
\(=-\frac{-2}{-6} = -\frac13.\)
\(y_0 = -3\cdot \left(-\frac{1}{3}\right)^{2} - 2\cdot\left(-\frac{1}{3}\right) - 4\dfrac{2}{3}=\)
\(=-3\cdot\frac{1}{9} +\frac23 - 4\frac23 =\)
\(=-\frac13 +\frac23 - 4\frac23 =-4\frac13\)
\(\left(-\frac{1}{3}; -4\frac{1}{3}\right)\) - вершина параболы.
\(E(y) = \left(-\infty; -4\frac{1}{3}\right]\).
Ответ: \(E(y) = \left(-\infty; -4\frac{1}{3}\right]\).
Пояснения:
Для квадратичной функции
\(y=ax^{2}+bx+c\)
вершина параболы даёт либо наименьшее, либо наибольшее значение функции.
Если \(a>0\), ветви параболы направлены вверх и значение в вершине \((x_0; y_0)\) — наименьшее, поэтому множество значений функции имеет вид: \( [y_{0},+\infty)\).
Если \(a<0\), ветви параболы направлены вниз и значение в вершине \((x_0; y_0)\) — наибольшее, поэтому множество значений функции имеет вид: \( (-\infty,y_{0}]\).
В каждом пункте определили коэффициенты \(a\), \(b\), \(c\) и нашли координаты вершины параболы:
\(x_0 = -\frac{b}{2a}\),
\(y_0=ax_0^{2}+bx_0+c\).
Учитывая знак коэффициента \(a\), записали соответствующий промежуток значений функции.
Вернуться к содержанию учебника