Построение треугольника по двум сторонам и углу между ними

Задача:

Построить треугольник по двум сторонам и углу между ними с помощью циркуля и линейки (без масштабных делений).

Дано: отрезки МК и ОЕ, hk.

Построить АВС такой, что АВ = МК, АС = ОЕ, ВАС =hk.

Решение:

С помощью линейки проводим прямую и на ней с помощью циркуля отложим отрезок АВ, равный отрезку МК. Для этого произвольно на прямой ставим точку А, с помощью циркуля измеряем отрезок МК и строим окружность с центром в точке А радиуса МК (всю окружность строить необязательно, смотри, выделенное красным цветом). Точку пересечения окружности с прямой обозначаем В.

Далее строим угол ВАF равный углу hk. Для этого строим с помощью циркуля окружность радиуса МК с центром в вершине угла hk  (всю окружность строить необязательно, смотри, выделенное красным цветом). Точки пересечения данной окружности со сторонами угла hk обозначаем N и Р.

С помощью циркуля измеряем длину отрезка NP и строим окружность радиуса NP с центром в точке В (всю окружность строить необязательно, смотри, выделенное синим цветом). Точку пересечения данной окружности с окружностью радиуса МК с центром в точке А обозначаем F.

Далее, проводим луч АF с помощью линейки.

Затем, с помощью циркуля измеряем отрезок ОЕ и строим окружность радиуса ОЕ с центром в точку А (всю окружность строить необязательно, смотри, выделенное зеленым цветом). Точку пересечения данной окружности с лучом АF обозначаем С.

Теперь с помощью линейки соединяем точки В и С. Получаем треугольник АВС, в котором по построению АВ = МК, АС = ОЕ, ВАС =hk, следовательно, треугольник АВС - искомый.

При любых данных отрезках МК, ОЕ и данном неразвернутом угле hk искомый треугольник построить можно. Прямую и точку А на ней можно выбрать произвольно, значит, существует бесконечно много треугольников, удовлетворяющих условиям задачи, Все эти треугольники будут равны друг другу по первому признаку равенства треугольников (по двум сторонам и углу между ними), поэтому принято говорить, что данная задача имеет единственное решение.

Поделись с друзьями в социальных сетях:

Советуем посмотреть:

Теорема о сумме углов треугольника

Остроугольный, прямоугольный и тупоугольный треугольники

Теорема о соотношениях между сторонами и углами треугольника

Неравенство треугольника

Некоторые свойства прямоугольных треугольников

Признаки равенства прямоугольных треугольников

Уголковый отражатель

Расстояние от точки до прямой

Расстояние между параллельными прямыми

Построение треугольника по стороне и двум прилежащим к ней углам

Построение треугольника по трем его сторонам

Соотношения между сторонами и углами треугольника

Правило встречается в следующих упражнениях:

7 класс

Задание 290, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 291, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 315, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник