Длина отрезка

Отрезок - это геометрическая фигура, которая имеет начало и конец, значит отрезки можно измерять.

Измерить отрезок - значит найти его длину (расстояние между его концами).

Для того, чтобы найти длину отрезка, его сравнивают с отрезком принятым за единицу измерения, который носит название единичный отрезок.

Если за единицу измерения принять сантиметр, то, чтобы определить длину отрезка, нужно узнать сколько раз в этом отрезке укладывается сантиметр. На рис.1 в отрезке СD сантиметр укладывается ровно три раза, значит, длина отрезка СD равна 3 см, можно записать СD = 3 см. В данном случае, для измерения удобно использовать сантиметровую линейку.

Бывает, что единичный отрезок не укладывается целое число раз в измеряемый отрезок, тогда единичный отрезок делят на 10 равных частей и определяют сколько раз одна десятая часть укладывается в остатке измеряемого отрезка. На рис.2 в отрезке СВ сантиметр укладывается 2 раза и в остатке 3 раза укладывается одна десятая часть сантиметра, значит, длина отрезка СВ равна 3,3 см или, учитывая что для сантиметра десятая часть равна миллиметру, 3 см 3 мм, т.е. можно записать СВ = 3,3 см (СВ = 3 см 3 мм).

Может получится так, что и в миллиметрах остаток не укладывается целое число раз, тогда:

  • Если точность измерения не имеет большой роли, то, как видно на Рис.3, в отрезке СК сантиметр укладывается два раза с остатком, в остатке миллиметр укладывается 6 раз с остатком, говорят о приближенных значениях, т.е. длина отрезка приближенно равна 2,6 см или 2 см 6 мм, и записывают длина отрезка СК 2,6 см (СК 2 см 6 мм).

         

  • Если нужны более точные измерения, то процесс деления продолжается, т.е. миллиметр также можно разделить на 10 равных частей и т.д. Такая точность в повседневной жизни не нужна, поэтому пользуются приближенными значениями, но имеет важную роль при проведении каких-либо исследований для совершения научных открытий.

За единицу измерения можно принимать не только сантиметр, но и другие отрезки, например, дециметр, метр и т.д.

Длина отрезка - это всегда какое-то положительное число.

Свойства длин отрезков:

  1. Равные отрезки имеют равные длины.
  2. Если точка делит отрезок на два отрезка, то длина всего отрезка равна сумме длин этих двух отрезков. Так на Рис.4 точка С делит отрезок АВ на два отрезка АС и СВ. Приложим линейку и видим, что АС = 4,5 см, СВ = 2,5 см, АВ = 7 см, т.е. АС + СВ = АВ.

         

  1. Если длина одного отрезка MN в n раз больше длины другого отрезка PQ, то записывают MN = nPQ. На Рис.5 даны два отрезка MN и PQ, приложим к ним линейку и видим, что MN = 8 см, PQ = 2 см, т.е. MN больше PQ в 4 раза, тогда можно записать, что MN = 4PQ.

         

Советуем посмотреть:

Точки, прямые, отрезки

Провешивание прямой на местности

Луч

Угол

Равенство геометрических фигур

Сравнение отрезков

Сравнение углов

Единицы измерения длины, расстояний

Градусная мера угла

Измерение углов на местности

Смежные углы

Вертикальные углы

Перпендикулярные прямые

Построение прямых углов на местности

Начальные геометрические сведения

Правило встречается в следующих упражнениях:

7 класс

Задание 24, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 25, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 26, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 27, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 74, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 75, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 98, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 3, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 387, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 392, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник