Вернуться к содержанию учебника
Решите систему неравенств:
а) \(\begin{cases}4x^2 - 27x - 7 > 0,\\ x > 0;\end{cases}\)
б) \(\begin{cases}-3x^2 + 17x + 6 < 0,\\ x < 0;\end{cases}\)
в) \(\begin{cases}x + 1 < 0,\\ 2x^2 - 18 > 0;\end{cases}\)
г) \(\begin{cases}x - 4 > 0,\\ 3x^2 - 15x < 0.\end{cases}\)
Вспомните:
а) \(\begin{cases}4x^2 - 27x - 7 > 0,\\ x > 0\end{cases}\)
\(4x^2 - 27x - 7 > 0\)
\(y = 4x^2 - 27x - 7\) - парабола, ветви которой направлены вверх.
\(4x^2 - 27x - 7 = 0\)
\(D = (-27)^2 - 4\cdot 4\cdot (-7) =\)
\(=729 + 112 = 841 > 0\) - 2 корня.
\(\sqrt{D} = 29\)
\(x_{1} = \dfrac{27 + 29}{2\cdot4} = \dfrac{56}{8} = 7.\)
\(x_{2} = \dfrac{27 - 29}{2\cdot4} = \dfrac{-2}{8} = -\dfrac14.\)

\(x \in (7; +\infty)\).
Ответ: \(x \in (7; +\infty)\).
б) \(\begin{cases}-3x^2 + 17x + 6 < 0,\\ x < 0\end{cases}\)
\(-3x^2 + 17x + 6 < 0\)
\(y = -3x^2 + 17x + 6\) - парабола, ветви которой направлены вниз.
\(-3x^2 + 17x + 6 = 0\) \(/\times (-1)\)
\(3x^2 - 17x - 6 = 0\)
\(D = (-17)^2 - 4\cdot 3\cdot (-6) =\)
\(=289 + 72 = 361 > 0\) - 2 корня.
\(\sqrt{D} = 19\).
\(x_{1} = \dfrac{17 + 19}{2\cdot3} = \dfrac{36}{6} = 6.\)
\(x_{2} = \dfrac{17 - 19}{2\cdot3} = \dfrac{-2}{6} = -\dfrac{1}{3}.\)

\(x \in \left(-\infty; -\frac13\right)\)
Ответ: \(x \in \left(-\infty; -\frac13\right)\).
в) \(\begin{cases}x + 1 < 0,\\ 2x^2 - 18 > 0;\end{cases}\)
1) \( x + 1 < 0 \)
\(x < -1. \)
2) \( 2x^2 - 18 > 0\)
\(y = 2x^2 - 18\) - парабола, ветви которой направлены вверх.
\(2x^2 - 18 = 0\) \(/ : 2\)
\( x^2 - 9 = 0\)
\(x^2 = 9\)
\(x = \pm\sqrt9\)
\(x = \pm3\)

\( x \in (-\infty; -3)\)
Ответ: \( x \in (-\infty; -3)\).
г) \(\begin{cases}x - 4 > 0,\\ 3x^2 - 15x < 0\end{cases}\)
1) \( x - 4 > 0 \)
\(x > 4. \)
2) \( 3x^2 - 15x < 0\)
\(y = 3x^2 - 15x\) - парабола, ветви которой направлены вверх.
\(3x^2 - 15x = 0\)
\( 3x(x - 5) = 0 \)
\(x = 0\) или \(x - 5 = 0\)
\(x = 5\)

\(x \in (4; 5)\).
Ответ: \(x \in (4; 5)\).
Пояснения:
Решение системы неравенств — это пересечение множеств решений всех неравенств системы. Поэтому после нахождения промежутков для каждого неравенства мы строим их пересечение.
Решение неравенств вида
\(ax^2 + bx + c > 0\), \(ax^2 + bx + c < 0\):
1) находим корни квадратного трехчлена \(ax^2 + bx + c\), если они есть;
2) если трехчлен имеет корни, то отмечаем их на оси \(x\) и через отмеченные точки проводим схематически параболу, ветви которой направлены вверх при \(a > 0\) или вниз при \(a < 0\); если трехчлен не имеет корней, то схематически изображают параболу, расположенную в верхней полуплоскости при \(a > 0\) или нижней при \(a < 0\);
3) находят на оси \(x\) промежутки, для которых точки параболы расположены выше оси \(x\) (если решают неравенство вида \(ax^2 + bx + c > 0\)) или ниже оси \(x\) (если решают неравенство вида \(ax^2 + bx + c < 0\)).
Если знак неравенства строгий (\(>\) или \(<\)), то точку на координатной прямой делаем "выколотой" (незакрашенной), при записи промежутка используем круглую скобку.
Дискриминант квадратного трехчлена
\(ax^2 + bx + c \):
\(D = b^2 - 4ac\).
Если \(D > 0\), то квадратный трехчлен имеет 2 корня:
\(x_{1,2} = \frac{-b \pm \sqrt D}{2a}\).
Если \(D = 0\), то квадратный трехчлен имеет 1 корень:
\(x = -\frac{b}{2a}\).
Если \(D < 0\), то квадратный трехчлен не имеет корней.
Корни уравнения \(ax^2 + bx\) находим разложением многочлена на множители \(x(ax + b)\) и используем то, что произведение равно нулю только тогда, когда хотя бы один из множителей равен нулю: \(x = 0\) или \(ax + b = 0\), откуда \(x = -\frac{b}{a}\).
Чтобы найти корни уравнения
\(ax^2 + c = 0\), переносим коэффициент \(c\) в правую сторону: \(ax^2 = -с\), затем делим обе части уравнения на \(a\): \(x^2 = \frac{-с}{a}\), откуда получаем
\(x_1 = -\sqrt{\frac{-c}{a}}\) и \(x_2= \sqrt{\frac{-c}{a}}\).
Вернуться к содержанию учебника