Градусная мера дуги окружности

На рисунке 1 две точки А и В разделяют окружность на две дуги. На каждой дуге отмечают промежуточную точку, например L и М, для того, чтобы различать эти дуги. Обозначают дуги так: АLB  и АМВ. Если в задаче ясно, о какой из двух дуг идет речь, то используют обозначение без промежуточной точки: АВ.

Если отрезок, соединяющий концы дуги является диаметром то, такая дуга называется полуокружностью. На рисунке 2 изображена окружность с центром О, концы диаметра АВ разделяют данную окружность на две полуокружности: АКB  и АСВ.

Центральный угол - угол с вершиной в центре окружности. Пусть стороны центрального угла окружности с центром О пересекают ее в точках А и В. Центральному углу АОВ соответствуют две дуги с концами А и В.

       

Измерение дуги окружности

Дугу окружности можно измерять в градусах.

  • Если дуга АВ окружности с центром О меньше полуокружности (Рис. 3, а) или является полуокружностью (Рис. 2), то ее градусная мера считается равной градусной мере центрального угла АОВ.
  • Если дуга АВ окружности с центром О больше полуокружности (Рис. 3, б), то ее градусная мера считается равной 3600 - АОВ.
Сумма градусных мер двух дуг окружности с общими концами равна 3600.

Градусная мера дуги АВ (дуги АLВ), как и сама дуга, обозначается символом АВ ( АLВ). На рисунке 4 градусная мера дуги САВ равна 1450. Обычно говорят кратко: "Дуга САВ равна 1450" и пишут: САВ = 1450. Также на рисунке 4 АDВ = 3600 - 1150 = 2450, СDВ = 3600 - 1450 = 2150, = 1800.

Советуем посмотреть:

Свойства диаметров и хорд окружности

Взаимное расположение прямой и окружности

Касательная к окружности

Взаимное расположение двух окружностей

Общие касательные двух окружностей

Теорема о вписанном угле

Углы, образованные хордами, касательными и секущими

Свойство биссектрисы угла

Свойства серединного перпендикуляра к отрезку

Теорема о пересечении высот треугольника

Вписанная окружность

Описанная окружность

Окружность

Правило встречается в следующих упражнениях:

7 класс

Задание 656, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 707, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 717, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1109, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1279, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 11, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 12, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 21, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 22, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 803, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник