Задание 2.427 - ГДЗ Математика 6 класс. Виленкин, Жохов. Учебник часть 1

Старая и новая редакции

Вернуться к содержанию учебника

2.424 2.425 2.426 2.427 2.428 2.429 2.430

Вопрос

Выберите год учебника

№2.427 учебника 2023-2024 (стр. 102):

Вычислите:


№2.427 учебника 2021-2022 (стр. 96):

Какое число обратно числу:

Подсказка

№2.427 учебника 2023-2024 (стр. 102):

Вспомните:

  1. Порядок выполнения действий.
  2. Смешанные числа, действия с ними.
  3. Неправильные дроби.
  4. Умножение обыкновенных дробей, взаимно обратные числа.
  5. Деление обыкновенных дробей.
  6. Основное свойство дроби (сокращение дробей).
  7. Сложение и вычитание дробей с разными знаменателями.
  8. Приведение дробей к общему знаменателю.
  9. Сложение и вычитание дробей с одинаковыми знаменателями.
  10. Деление и дроби.
  11. Деление с остатком.

№2.427 учебника 2021-2022 (стр. 96):

Вспомните:

  1. Какие числа называют взаимно обратными.
  2. Смешанные числа.
  3. Неправильные дроби.
  4. Десятичные дроби.
  5. Сокращение дробей.
  6. Деление и дроби.
  7. Деление с остатком.

Ответ

№2.427 учебника 2023-2024 (стр. 102):


Пояснения:

Действиями первой ступени называют сложение и вычитание чисел, а действиями второй ступени - умножение и деление чисел.

При вычислении значений выражений порядок выполнения действий определяют следующие правила:

1. Если выражение содержит только действия одной ступени и в нем нет скобок, то действия выполняют по порядку слева направо.

2. Если в выражении нет скобок, то сначала выполняют действия второй ступени, потом - действия первой ступени.

3. Если в выражении есть скобки есть скобки, то сначала выполняют действия в скобках (учитывая правила 1 и 2).

Красные числа, стоящие сверху над действиями, показывают в каком порядке нужно выполнять действия.

Правила, по которым выполняем вычисления:

1) чтобы найти сумму смешанных чисел, надо: дробные части этих чисел привести к наименьшему общему знаменателю; отдельно выполнить сложение целых и отдельно дробных частей; при необходимости сократить дробь (разделить числитель и знаменатель дроби на их наибольший общий делитель), выделить целую часть (когда числитель больше знаменателя) и прибавить ее к полученной целой части;

2) чтобы найти разность смешанных чисел, надо: дробные части этих чисел привести к наименьшему общему знаменателю; если дробная часть уменьшаемого больше дробной части вычитаемого, то надо отдельно вычесть целые и отдельно дробные части и результаты сложить; если дробная часть уменьшаемого меньше дробной части вычитаемого, то надо превратить ее в неправильную дробь, уменьшив на единицу целую часть, и отдельно вычесть целые и отдельно дробные части и результаты сложить; при необходимости сократить дробь (разделить числитель и знаменатель дроби на их наибольший общий делитель);

3) чтобы сложить (вычесть) две дроби с разными знаменателями, надо: привести данные дроби к общему знаменателю, а затем применить правило сложения (вычитания) дробей с одинаковыми знаменателями;

4) чтобы найти сумму (разность) двух дробей с одинаковыми знаменателями, нужно сложить (вычесть) их числители, а знаменатель оставить прежним;

5) произведением двух дробей является дробь, числитель которой равен произведению числителей, а знаменатель - произведению знаменателей;

6) чтобы выполнить умножение смешанных чисел, нужно записать эти числа в виде неправильных дробей, а затем воспользоваться правилом умножения дробей;

7) чтобы найти частное двух дробей, надо делимое умножить на число, обратное делителю. При этом помним, обратным числу является число ;

8) чтобы выполнить деление смешанных чисел, нужно записать эти числа в виде неправильных дробей, а затем воспользоваться правилом деления дробей.

Чтобы преобразовать смешанное число в неправильную дробь, надо целую часть числа умножить на знаменатель дробной части и к полученному произведению прибавить числитель дробной части; эту сумму записать как числитель неправильной дроби, а в ее знаменатель записать знаменатель дробной части смешанного числа.

При выполнении умножения дробей, чтобы вычисления были проще, не надо перемножать сразу, лучше сделать это после сокращения. Сократить дробь - значит, разделить ее числитель и знаменатель на одно и то же число (наибольший общий делитель).

Если при вычислениях получилась неправильная дробь (числитель больше знаменателя), ее нужно преобразовать в смешанное число. Чтобы неправильную дробь, числитель которой нацело не делится на знаменатель, преобразовать в смешанное число, надо числитель разделить на знаменатель; полученное неполное частное записать как целую часть смешанного числа, а остаток - как числитель его дробной части.


№2.427 учебника 2021-2022 (стр. 96):


Пояснения:

Взаимно обратными называют два числа, произведение которых равно единице.

Помним:

  • обратным числу является число ;
  • если - натуральное число, то обратным ему является число .

Чтобы определить число, обратное смешанному числу, нужно преобразовать смешанное число в неправильную дробь и, если возможно, сократить ее. Чтобы преобразовать смешанное число в неправильную дробь, надо целую часть числа умножить на знаменатель дробной части и к полученному произведению прибавить числитель дробной части; эту сумму записать как числитель неправильной дроби, а в ее знаменатель записать знаменатель дробной части смешанного числа.

Чтобы определить число, обратное десятичной дроби, нужно десятичную дробь преобразовать в обыкновенную дробь, если возможно, сократить ее. У обыкновенной дроби в знаменателе столько нулей, сколько знаков после запятой у десятичной дроби.

Сократить дробь, значит, разделить ее числитель и знаменатель на их наибольший общий делитель.

Если обратное число - неправильная дробь (числитель больше знаменателя), ее нужно преобразовать в смешанное число. Чтобы неправильную дробь, числитель которой нацело не делится на знаменатель, преобразовать в смешанное число, надо числитель разделить на знаменатель; полученное неполное частное записать как целую часть смешанного числа, а остаток - как числитель его дробной части.


Вернуться к содержанию учебника