Упражнение 639 - ГДЗ Алгебра 9 класс. Макарычев, Миндюк. Учебник. Страница 182

Вернуться к содержанию учебника

636 637 638 639 640 641 642

Вопрос

Вычислите первые несколько членов последовательности \((y_n)\), если:

а) \(y_1=-3,\; y_{n+1}-y_n=10\);

б) \(y_1=10,\; y_{n+1}\cdot y_n=2{,}5\);

в) \(y_1=1{,}5,\; y_{n+1}-y_n=n\);

г) \(y_1=-4,\; y_{n+1}:y_n=-n^2.\)

Подсказка

Ответ

а) \(y_1=-3,\; y_{n+1}-y_n=10\)

\(y_{n+1}=y_n+10\)

\(y_1=-3\)

\(y_{1+1} = y_2=y_1+10=-3+10=7\)

\(y_{2+1} =y_3=y_2+10=7+10=17\)

\(y_{3+1} =y_4=y_3+10=17+10=27\)

\(y_{4+1} =y_5=y_4+10=27+10=37\)

б) \(y_1=10,\; y_{n+1}\cdot y_n=2{,}5\)

\( y_{n+1}=\frac{2{,}5}{y_n}\)

\(y_1=10\)

\(y_{1+1} =y_2= \frac{2{,}5}{y_1}= \frac{2{,}5}{10}=0,25\).

\(y_{2+1} =y_3= \frac{2{,}5}{y_2}= \frac{2{,}5}{0,25}=\frac{250}{25}=\)

\(=10\).

\(y_{3+1} =y_4= \frac{2{,}5}{y_3}= \frac{2{,}5}{10}=0,25\).

\(y_{4+1} =y_5= \frac{2{,}5}{y_4}= \frac{2{,}5}{0,25}=\frac{250}{25}=\)

\(=10\).

в) \(y_1=1{,}5,\; y_{n+1}-y_n=n\)

\(y_{n+1}=y_n+n\)

\(y_1=1{,}5\)

\( y_{1+1} = y_2=y_1+1=1{,}5+1=2{,}5\)

\( y_{2+1} = y_3=y_2+2=2{,}5+2=4{,}5\)

\( y_{3+1} = y_4=y_3+3=4{,}5+3=7{,}5\)

\( y_{4+1} = y_5=y_4+4=7{,}5+4=\)

\(=11{,}5\)

г) \(y_1=-4,\; y_{n+1}:y_n=-n^2\)

\(y_{n+1}=y_n\cdot(-n^2)\)

\(y_1=-4\)

\(y_{1+1} = y_2=y_1\cdot(-1^2)=\)

\(=-4\cdot(-1)=4\).

\(y_{2+1} =y_3=y_2\cdot(-2^2)=\)

\(=4\cdot(-4)=-16\).

\(y_{3+1} =y_4=y_3\cdot(-3^2)=\)

\(=-16\cdot(-9)=144\).

\(y_{4+1} =y_5=y_4\cdot(-4^2)=\)

\(=144\cdot(-16)=-2304\).


Пояснения:

Используемые правила и приёмы:

1) Если задано равенство вида

\(y_{n+1}-y_n=d\), то каждый следующий член находится прибавлением числа \(d\) к предыдущему.

2) Если задано равенство вида

\(y_{n+1}\cdot y_n=q\), то каждый следующий член находится делением числа \(q\) на предыдущий член.

3) Если \(y_{n+1}:y_n=-n^2\), то

\(y_{n+1}=y_n\cdot(-n^2)\).


Вернуться к содержанию учебника