Упражнение 141 - ГДЗ Алгебра 9 класс. Макарычев, Миндюк. Учебник. Страница 55

Вернуться к содержанию учебника

138 139 140 141 142 143 144

Вопрос

С помощью шаблона параболы \(y = x^{2}\) постройте график функции:

а) \(y = (x + 3)^{2} - 4\);

б) \(y = -(x + 4)^{2} - 2\).

Подсказка

Ответ

\( y = x^{2}\)

\(x\) -3 -2 -1 0 1 2 3
\(y\) 9 4 1 0 1 4 9

а) \( y = (x + 3)^{2} - 4 \)

б) \( y = -(x + 4)^{2} - 2 \)


Пояснения:

1. Общий вид параболы

\[ y = (x - a)^{2} + b \]

Вершина имеет координаты \((a; b)\). Если \(a>0\) — сдвиг вправо, если \(a<0\) — влево. Если \(b>0\) — сдвиг вверх, если \(b<0\) — вниз.

а) Графиком функции \( y = (x + 3)^{2} - 4\) является парабола \(y = x^{2}\), смещённая вниз на 4 единицы и влево на 3 единицы. Вершина: \((-3; -4)\). Ветви направлены вверх. 

б) Графиком функции \(y = -(x + 4)^{2} - 2\) является парабола \(y = x^{2}\), отражённая относительно оси \(Ox\) и сдвинутая вниз на 2 единицы и влево на 4 единицы. Вершина: \((-4; -2)\). Ветви направлены вниз.


Вернуться к содержанию учебника