Упражнение 1212 - ГДЗ Алгебра 8 класс. Макарычев, Миндюк. Учебник. Страница 269

Старая и новая редакции

Вернуться к содержанию учебника

1209 1210 1211 1212 1213 1214 1215

Вопрос

№1212 учебника 2023-2025 (стр. 269):

Представьте в виде степени произведения выражение:

а) \(0{,}0001x^{-4}\);

б) \(32y^{-5}\);

в) \(0{,}0081a^{8}b^{-12}\);

г) \(10^{n}x^{-2n}y^{3n}\), где \(n\) — целое число.

Подсказка

№1212 учебника 2023-2025 (стр. 269):

Вспомните:

  1. Степень с целым отрицательным показателем.
  2. Свойства степени с целым показателем.
  3. Степень с натуральным показателем.
  4. Умножение рациональных чисел.

Ответ

№1212 учебника 2023-2025 (стр. 269):

а) \( 0{,}0001x^{-4} = 0,1^4x^{-4} =\)

\(=10^{-4}x^{-4} = (10x)^{-4}. \)

б) \( 32y^{-5} = 2^{5}(y^{-1})^5 = (2y^{-1})^{5} \)

в) \( 0{,}0081a^{8}b^{-12} = 0{,}3^{4}(a^{2})^4(b^{-3})^4 =\)

\(=(0{,}3a^{2}b^{-3})^{4}. \)

г) \( 10^{n}x^{-2n}y^{3n} = (10x^{-2}y^{3})^{n}, \)

где \(n\) — целое число.


Пояснения:

Используемые свойства степеней:

\( a^{m}b^{m} = (ab)^{m}, \)

\((a^{m})^{n} = a^{mn}. \)


Вернуться к содержанию учебника