Задание 2.494 - ГДЗ Математика 6 класс. Виленкин, Жохов. Учебник часть 1

Старая и новая редакции

Вернуться к содержанию учебника

2.491 2.492 2.493 2.494 2.495 2.496 2.497

Вопрос

Выберите год учебника

№2.494 учебника 2023-2024 (стр. 109):

Вычислите:


№2.494 учебника 2021-2022 (стр. 104):

Выполните действия:

Подсказка

№2.494 учебника 2023-2024 (стр. 109):

№2.494 учебника 2021-2022 (стр. 104):

Вспомните:

  1. Деление обыкновенных дробей.
  2. Взаимно обратные числа, умножение обыкновенных дробей.
  3. Сокращение дробей.
  4. Неправильные дроби.
  5. Деление и дроби.
  6. Деление с остатком.
  7. Смешанные числа.

Ответ

№2.494 учебника 2023-2024 (стр. 109):


Пояснения:

Чтобы выполнить деление, смешанные числа преобразовываем в неправильные дроби. Чтобы преобразовать смешанное число в неправильную дробь, надо целую часть числа умножить на знаменатель дробной части и к полученному произведению прибавить числитель дробной части; эту сумму записать как числитель неправильной дроби, а в ее знаменатель записать знаменатель дробной части смешанного числа.

Чтобы найти частное двух дробей, надо делимое умножить на число, обратное делителю.

При этом помним, обратным числу является число .

Произведением двух дробей является дробь, числитель которой равен произведению числителей, а знаменатель - произведению знаменателей.

Чтобы умножить обыкновенную дробь на натуральное число, нужно ее числитель умножить на это число, а знаменатель оставить без изменения.

При выполнении умножения дробей, чтобы вычисления были проще, не надо перемножать сразу, лучше сделать это после сокращения. Сократить дробь - значит, разделить ее числитель и знаменатель на одно и то же число (наибольший общий делитель).

Если при вычислениях получилась неправильная дробь (числитель больше знаменателя), преобразуем ее в смешанное число. Чтобы неправильную дробь, числитель которой нацело не делится на знаменатель, преобразовать в смешанное число, надо числитель разделить на знаменатель; полученное неполное частное записать как целую часть смешанного числа, а остаток - как числитель его дробной части.


№2.494 учебника 2021-2022 (стр. 104):


Пояснения:

Чтобы выполнить деление, смешанные числа преобразовываем в неправильные дроби. Чтобы преобразовать смешанное число в неправильную дробь, надо целую часть числа умножить на знаменатель дробной части и к полученному произведению прибавить числитель дробной части; эту сумму записать как числитель неправильной дроби, а в ее знаменатель записать знаменатель дробной части смешанного числа.

Чтобы найти частное двух дробей, надо делимое умножить на число, обратное делителю.

При этом помним, обратным числу является число .

Произведением двух дробей является дробь, числитель которой равен произведению числителей, а знаменатель - произведению знаменателей.

Чтобы умножить обыкновенную дробь на натуральное число, нужно ее числитель умножить на это число, а знаменатель оставить без изменения.

При выполнении умножения дробей, чтобы вычисления были проще, не надо перемножать сразу, лучше сделать это после сокращения. Сократить дробь - значит, разделить ее числитель и знаменатель на одно и то же число (наибольший общий делитель).

Если при вычислениях получилась неправильная дробь (числитель больше знаменателя), преобразуем ее в смешанное число. Чтобы неправильную дробь, числитель которой нацело не делится на знаменатель, преобразовать в смешанное число, надо числитель разделить на знаменатель; полученное неполное частное записать как целую часть смешанного числа, а остаток - как числитель его дробной части.


Вернуться к содержанию учебника