Задание 3.340 - ГДЗ Математика 5 класс. Виленкин, Жохов. Учебник часть 1. Страница 119

Старая и новая редакции

Вернуться к содержанию учебника

3.337 3.338 3.339 3.340 3.341 3.342 3.343

Вопрос

Выберите год учебника

№3.340 учебника 2023-2024 (стр. 119):

Напишите все делители чисел 8, 15, 26, 23. Какое из них простое? Разложите эти числа на множители.


№3.340 учебника 2021-2022 (стр. 119):

Выпишите из чисел 2, 3, 7, 8, 10, 12, 15, 16, 24, 25 те, которые являются:

а) кратными 6;

б) делителями 24;

в) кратными 5 и делителями 20;

г) делителями 12 и кратными 4.

Подсказка

№3.340 учебника 2023-2024 (стр. 119):

Вспомните:

  1. Делители и кратные.
  2. Умножение чисел.

№3.340 учебника 2021-2022 (стр. 119):

Ответ

№3.340 учебника 2023-2024 (стр. 119):

Делители 8:

1, 2, 4, 8.

8 = 2 • 4 = 1 • 8 = 2 • 2 • 2

Делители 15:

1, 3, 5, 15.

15 = 1 • 15 = 3 • 5.

Делители 26:

1, 2, 13, 26.

26 = 1 • 26 = 2 • 13.

Делители 23:

1, 23.

23 = 1 • 23.

Ответ: простое число - 23.


Пояснения:

Натуральное число делится без остатка на натуральное число , если есть такое число , что . Натуральное число называют делителем натурального числа , а число - кратным числа .

Натуральное число называют простым, если оно имеет только два делителя: единицу и само это число.

Натуральное число, у которого более двух делителей называют составным.

Единица не является ни простым, ни составным числом.

Разложить число на множители, значит, представить это число в виде произведения двух или более множителей.


№3.340 учебника 2021-2022 (стр. 119):

а) кратными 6:

12, 24.

б) делителями 24:

2, 3, 8, 12, 24.

в) кратными 5 и делителями 20:

10.

г) делителями 12 и кратными 4:

12.


Пояснения:

Натуральное число делится без остатка на натуральное число , если есть такое число , что . Натуральное число называют делителем натурального числа , а число - кратным числа .

Натуральное число называют простым, если оно имеет только два делителя: единицу и само это число.

Натуральное число, у которого более двух делителей называют составным.

Единица не является ни простым, ни составным числом.


Вернуться к содержанию учебника